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Abstract

An independent set S of a connected graph G is called a frame
if G — S is connected. If |[S| = k, then S is called a k-frame. We
prove the following theorem. Let k > 2 be an integer, G be a con-
nected graph with V(G) = {v1,v2,...,vn}, and degs(u) denote the
degree of a vertex u. Suppose that for every 3-frame S = {vq, vy, vc}
such that 1 < a < b < ¢ < n, degg(va) < a, degg(vp) < b—1
and degg(ve) < ¢ — 2, it holds that degy(ve) + degg (vy) + dege (ve)
—|N¢(va) N Ng(vs) N N (ve)| > |G| — k +1. Then G has a spanning
tree with at most k-leaves. Moreover, the condition is sharp. This
theorem is a generalization of the results of E. Flandrin, H.A. Jung
and H. Li (Discrete Math. 90 (1991), 41-52) and of A. Kyaw (Aus-
tralasian Journal of Combinatorics. 37 (2007), 3-10) for traceability.

1 Introduction

Let G be a graph with the vertex set V(G) and the edge set E(G). In
this paper, we consider only simple graphs, which has neither loops nor
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multiple edges. We write |G| for the order of G, that is, |G| = |[V(G)|. For
a vertex v of G, we denote by deg(v) the degree of v in G, and by Ng(v)
the neighborhood of v in G. A vertex of degree one is called an end-vertex,

and an end-vertex of a tree is usually called a leaf. Let X be a nonempty
subset of V(G). We write

No(X)=J Na(x)  and  degg(X) =) degg(a).
reX reX

The subgraph of G induced by X is denoted by (X)g. We write G — X
for (V(G) — X)¢, and for a vertex v of G, write G —v for G — {v}. For an
integer ¢ > 1, define

Neg(X;1) ={z € V(GQ); |Ng(x)NX| =1i}.
In particular,
Ne({u,v,w};3) = Ng(u) N Ng(v) N Ng(w).

Let H be a sugraph of a graph G. If xy is an edge of G not contained in
H, then H + zy denotes the subgraph of G obtained from H by adding xy.
For an edge wv of H, H — uv is defined analogously. A subset S C V(G) is
called independent if no two vertices of S are adjacent in G. An independent
set S of G is called a frame if G — S is connected. A frame S with |S| =k
is called a k-frame. For sets X and Y, the cardinality of X is denote by
|X|, and X \ 'Y is denoted by X —Y if Y C X. For further explanation of
terminology and notation, we refer to [2].

In [4], E. Flandrin, H.A. Jung and H. Li obtained the following theorem
for a graph to have a hamiltonian path.

Theorem 1 ([4]) Let G be a connected graph. If dego({u,v,w})—|Na({u,
vy,w};3)| > |G| = 1 for every independent set {u,v,w} of G, then G has a
hamiltonian path.

A. Kyaw [5] improved the previous result in the following way.

Theorem 2 ([5]) Let G be a connected graph with V(G) = {v1,vs,...,vn}.
Suppose that for every 3-frame S = {vq,vp,v.} of G such that 1 < a <b <
¢ <n, degs(vy) < a, dege(vpy) <b—1 and degy(ve) < ¢ — 2, it holds that
dege ({va, b, ve}) — [Na({va, vb, vc }53)| > |G| — 1. Then G has a hamilto-
nian path.

Generalizing Theorem 1 and Theorem 2, we prove the following result.



Theorem 3 Let k > 2 be an integer, and G be a connected graph with
V(G) = {v1,v2, ...,vn}. Suppose that for every 3-frame S = {vq,vp, v}
of G such that 1 < a < b < ¢ <mn, dega(ve) < a, dega(vp) < b—1 and
dege(ve) < ¢ —2, it holds that

dego ({va, vp, ve}) — INa({va, vp,vc 15 3)| > |G| — k + 1. (1)
Then G has a spanning tree with at most k leaves.

We first show that the condition |G| — k + 1 in (1) is sharp. Con-
sider a complete bipartite graph H = K, m+%. It has no spanning tree
with at most k leaves, and for any numbering of vertices of H, H satisfies
deg i ({va, Vb, ve}) — | N ({va, vb, ve};3)| > |H| — k. Hence the condition is
sharp.

Since

degG({x’% Z}) - |Ng({l‘,y, 2}73)|
= dege({z,y}) + |Na(2) — Na({z,y, 2} 3)|,

Theorem 3 includes the following theorem of H. Broersma and H. Tuinstra

[1].

Theorem 4 ([1]) Let G be a connected graph. If degs({u,v}) > |G|—k+1
for every independent set {u,v} of G, then G has a spanning tree with at
most k leaves.

Some other results related to our theorem can be found in [3], [6], [7]
and others.

2 Proof of Theorem 3

Let G be a connected graph. We call a tree T of G a mazimum tree with 3
leaves if there exists no tree T” with 3 leaves in G such that |T'| < |T”|. To
prove Theorem 3, we need the following lemmas.

Lemma 5 Suppose that a connected graph G has no hamiltonian path. Let
T be a maximum tree with 3 leaves of G, which might be spanning, r be the
unique vertex of T with degy(r) = 3, and Vi,Va, V3 be the vertexr sets of
components of T —r. For every 1 <1i < 3, let u; be the leaf of T contained
in Vi, w; be the vertex of V; adjacent to r in T, and U = {uy,uz,ug}. For
each vertex x € V;, the vertex that precedes x on the path from r to x is
denoted by x—. Then the following holds:



(i) U is an independent set of G.
(i1) For all two distincti,j € {1,2,3}, ifx € ViNNg(u;), then
z# w; and 2~ ¢ Nao(U — {u;}).

3
(i11) For every 1 < i <3, |Vi| > 14+ > |Ng(uj) NV;| =|Na(U; 3)N
j=1

Vil.
() |T| = 2+ degg(U) — [Na(U; 3)|.

Proof. (i) Suppose u;u; € E(G) for some 1 < i < j < 3. Then T' =
T + u;u; — rw; is a path of G. Since G does not have a hamiltonian path,
there exist two adjacent vertices x € V(I”) and y € V(G) — V(T"). Then
T' + zy is a tree with 3 leaves, which contradicts the maximality of T.
Hence (i) is proved.

(ii) Suppose that a vertex « € V; is adjacent to u; for some j # ¢. If
x = w;, then T + w;u; — rw; is a path of G, and as in the proof of (i) we
derive a contradiction. Hence we may assume = # w;. Then T+ zu; —xx™
is a maximum tree with 3 leaves, whose leaf set is U — u; +x~. Thus by
(i) = and u¢ € U — {u;} are not adjacent in G. Hence (ii) holds.

(iii) Let {4,7, ¢} = {1,2,3} and (NG({ujaué}))i ={a” :z € NG({uj’
ue})}. By (i) and (ii), it follows that {u;}, Na(u)NVi, (Na({u;, ue}))~NV;
and (Ng(u;) N Ng(ug) — Na(U; 3)) NV, are pair-wise disjoint. So we have

Vil > [{ui}| + [Na(ui) N Vil + [(Na({uj, ue}))” NV
+|(Na(uj) N Ne(ue) — Na(U; 3)) NV
= 14 |Ng(ui) N Vil + [(Ne({uj, ue})) NVl
+ |(Ne(uj) N Ng(ue) — Na(U; 3)) N Vi
3
1+ [Na(u) NVi| = [(Na(U;3) N V7).

j=1

(iv) Since 2 > i1 |Na(uj) N{r} — |Na(U;3) N {r}|, and by (iii) we

obtain

3 3 3 3
STWVil+1 > 24> > [Na(u) N Vil = Y INa(U;3) N Vil
=1 =1

i=1 j=1

+ 2 IN(uj) 0 {1} = INa(U33) 0 {r}|

3
= 2+ [Na(u)) NV(T)| = [Na(U;3) N V(D).



Since Ng(u;) C V(T') for every 1 < j < 3 by the maximality of 7', we have

3 3
T] =Y |Vi[+1>2+ Y |Na(u;)| - [Na(U;3)|.

i=1 =1

O

By using Lemma 5, we can measure the order of a tree with at most 3
leaves in G.

Lemma 6 Let m > 1 be an integer and G be a connected graph with the
vertezr set {vy, va, ..., vn}. Assume that for every 3-frame S = {v,, vp, v}
such that a < b < ¢, degn(ve) < a, degg(vp) < b—1 and degg(ve) < c—2,
it holds that deg(S) — |Na(S;3)| > m. Then G has either a hamiltonian
path or a tree with 3 leaves and of order at least m + 2.

Proof. Assume that G does not have a hamiltonian path. Let T be a
maximum tree with 3 leaves of G, and denote the leaves of T' by v,, v, Ve,
where 1 < a < b < ¢ <n. Choose such a tree T so that

a+b+c is maximum (2)

among all the maximum trees with 3 leaves of G. Let r be the unique
vertex of T with deg(r) = 3, U = {va, v, 0.} be the set of leaves of T,
and Np(r) = {wg,wp,w.}, which lie on the paths from r to v, vp, e,
respectively. By the maximality of T', we have Ng(U) C V(T'), and so by
Lemma 5 (i), U is a 3-frame of G.

We now show that degqo(ve) < a, dege(vp) < b — 1 and degg(ve) <
¢ — 2. We first consider v.. For every v; € Ng(ve) — Nr(v.), it follows
that vy ¢ U U {wq,wp} from Lemma 5, and choose an edge vv, of T in
the cycle of T'+ v.v;. Then T + vevy — viv, is a tree with the leaf set
{Va,p,v:}. By (2) we have < ¢. Since a,b < ¢, there exist at least
|INg(ve) — Nr(ve)| + 2 = degg(ve) + 1 vertices v, whose indexes y are
less than c¢. Hence degg(ve) + 1 < ¢, which implies degg(ve) < ¢ — 2.
By the same argument as above, we can show that degs(vp) < b— 1 and
degi(ve) < a.

By Lemma 5 (iv), we obtain

IT| > 2+ dege(U) — [Ng(U;3)| > 2+ m.
Consequently the lemma is proved. 0

Proof of Theorem 3. If G has a hamiltonian path, then this path is
the desired tree. So we may assume that G does not have a hamiltonian
path. Choose a maximal tree T with 3 leaves as in Lemma 6. Then

T|> |Gl —k+1+2=|G|—k+3.



This implies £ > 3, and also the theorem is proved when k = 2 or 3. Assume
k > 4. By connecting all the vertices in V(G) — V(T) to T by edges or
paths, we can obtain a spanning tree of G with at most 3+ |G| —|T'| leaves,
which is the desired spanning tree of G as 3 + |G| — |T| < k. 0
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