A Note on Leaf-constrained Spanning Trees in a Graph

Mikio Kano ${ }^{1}$ and Aung Kyaw ${ }^{2 *}$
${ }^{1}$ Department of Computer and Information Sciences
Ibaraki University
Hitachi, Ibaraki, 316-8511 Japan
e-mail: kano@mx.ibaraki.ac.jp
${ }^{2}$ Department of Mathematics
East Yangon University
Yangon, Myanmar
e-mail: uaungkyaw70@gmail.com

Abstract

An independent set S of a connected graph G is called a frame if $G-S$ is connected. If $|S|=k$, then S is called a k-frame. We prove the following theorem. Let $k \geq 2$ be an integer, G be a connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $\operatorname{deg}_{G}(u)$ denote the degree of a vertex u. Suppose that for every 3 -frame $S=\left\{v_{a}, v_{b}, v_{c}\right\}$ such that $1 \leq a<b<c \leq n, \operatorname{deg}_{G}\left(v_{a}\right) \leq a, \operatorname{deg}_{G}\left(v_{b}\right) \leq b-1$ and $\operatorname{deg}_{G}\left(v_{c}\right) \leq c-2$, it holds that $\operatorname{deg}_{G}\left(v_{a}\right)+\operatorname{deg}_{G}\left(v_{b}\right)+\operatorname{deg}_{G}\left(v_{c}\right)$ $-\left|N_{G}\left(v_{a}\right) \cap N_{G}\left(v_{b}\right) \cap N_{G}\left(v_{c}\right)\right| \geq|G|-k+1$. Then G has a spanning tree with at most k-leaves. Moreover, the condition is sharp. This theorem is a generalization of the results of E. Flandrin, H.A. Jung and H. Li (Discrete Math. 90 (1991), 41-52) and of A. Kyaw (Australasian Journal of Combinatorics. 37 (2007), 3-10) for traceability.

1 Introduction

Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. In this paper, we consider only simple graphs, which has neither loops nor

[^0]multiple edges. We write $|G|$ for the order of G, that is, $|G|=|V(G)|$. For a vertex v of G, we denote by $\operatorname{deg}_{G}(v)$ the degree of v in G, and by $N_{G}(v)$ the neighborhood of v in G. A vertex of degree one is called an end-vertex, and an end-vertex of a tree is usually called a leaf. Let X be a nonempty subset of $V(G)$. We write
$$
N_{G}(X)=\bigcup_{x \in X} N_{G}(x) \quad \text { and } \quad \operatorname{deg}_{G}(X)=\sum_{x \in X} \operatorname{deg}_{G}(x)
$$

The subgraph of G induced by X is denoted by $\langle X\rangle_{G}$. We write $G-X$ for $\langle V(G)-X\rangle_{G}$, and for a vertex v of G, write $G-v$ for $G-\{v\}$. For an integer $i \geq 1$, define

$$
N_{G}(X ; i)=\left\{x \in V(G) ;\left|N_{G}(x) \cap X\right|=i\right\} .
$$

In particular,

$$
N_{G}(\{u, v, w\} ; 3)=N_{G}(u) \cap N_{G}(v) \cap N_{G}(w)
$$

Let H be a sugraph of a graph G. If $x y$ is an edge of G not contained in H, then $H+x y$ denotes the subgraph of G obtained from H by adding $x y$. For an edge $u v$ of $H, H-u v$ is defined analogously. A subset $S \subseteq V(G)$ is called independent if no two vertices of S are adjacent in G. An independent set S of G is called a frame if $G-S$ is connected. A frame S with $|S|=k$ is called a k-frame. For sets X and Y, the cardinality of X is denote by $|X|$, and $X \backslash Y$ is denoted by $X-Y$ if $Y \subseteq X$. For further explanation of terminology and notation, we refer to [2].

In [4], E. Flandrin, H.A. Jung and H. Li obtained the following theorem for a graph to have a hamiltonian path.

Theorem 1 ([4]) Let G be a connected graph. If $\operatorname{deg}_{G}(\{u, v, w\})-\mid N_{G}(\{u$, $v, w\} ; 3)|\geq|G|-1$ for every independent set $\{u, v, w\}$ of G, then G has a hamiltonian path.
A. Kyaw [5] improved the previous result in the following way.

Theorem 2 ([5]) Let G be a connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Suppose that for every 3-frame $S=\left\{v_{a}, v_{b}, v_{c}\right\}$ of G such that $1 \leq a<b<$ $c \leq n, \operatorname{deg}_{G}\left(v_{a}\right) \leq a, \operatorname{deg}_{G}\left(v_{b}\right) \leq b-1$ and $\operatorname{deg}_{G}\left(v_{c}\right) \leq c-2$, it holds that $\operatorname{deg}_{G}\left(\left\{v_{a}, v_{b}, v_{c}\right\}\right)-\left|N_{G}\left(\left\{v_{a}, v_{b}, v_{c}\right\} ; 3\right)\right| \geq|G|-1$. Then G has a hamiltonian path.

Generalizing Theorem 1 and Theorem 2, we prove the following result.

Theorem 3 Let $k \geq 2$ be an integer, and G be a connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Suppose that for every 3-frame $S=\left\{v_{a}, v_{b}, v_{c}\right\}$ of G such that $1 \leq a<b<c \leq n$, $\operatorname{deg}_{G}\left(v_{a}\right) \leq a, \operatorname{deg}_{G}\left(v_{b}\right) \leq b-1$ and $\operatorname{deg}_{G}\left(v_{c}\right) \leq c-2$, it holds that

$$
\begin{equation*}
\operatorname{deg}_{G}\left(\left\{v_{a}, v_{b}, v_{c}\right\}\right)-\left|N_{G}\left(\left\{v_{a}, v_{b}, v_{c}\right\} ; 3\right)\right| \geq|G|-k+1 \tag{1}
\end{equation*}
$$

Then G has a spanning tree with at most k leaves.
We first show that the condition $|G|-k+1$ in (1) is sharp. Consider a complete bipartite graph $H=K_{m, m+k}$. It has no spanning tree with at most k leaves, and for any numbering of vertices of H, H satisfies $\operatorname{deg}_{H}\left(\left\{v_{a}, v_{b}, v_{c}\right\}\right)-\left|N_{H}\left(\left\{v_{a}, v_{b}, v_{c}\right\} ; 3\right)\right| \geq|H|-k$. Hence the condition is sharp.

Since

$$
\begin{aligned}
& \operatorname{deg}_{G}(\{x, y, z\})-\left|N_{G}(\{x, y, z\} ; 3)\right| \\
= & \operatorname{deg}_{G}(\{x, y\})+\left|N_{G}(z)-N_{G}(\{x, y, z\} ; 3)\right|
\end{aligned}
$$

Theorem 3 includes the following theorem of H. Broersma and H. Tuinstra [1].

Theorem 4 ([1]) Let G be a connected graph. If $\operatorname{deg}_{G}(\{u, v\}) \geq|G|-k+1$ for every independent set $\{u, v\}$ of G, then G has a spanning tree with at most k leaves.

Some other results related to our theorem can be found in $[3],[6],[7]$ and others.

2 Proof of Theorem 3

Let G be a connected graph. We call a tree T of G a maximum tree with 3 leaves if there exists no tree T^{\prime} with 3 leaves in G such that $|T|<\left|T^{\prime}\right|$. To prove Theorem 3, we need the following lemmas.

Lemma 5 Suppose that a connected graph G has no hamiltonian path. Let T be a maximum tree with 3 leaves of G, which might be spanning, r be the unique vertex of T with $\operatorname{deg}_{T}(r)=3$, and V_{1}, V_{2}, V_{3} be the vertex sets of components of $T-r$. For every $1 \leq i \leq 3$, let u_{i} be the leaf of T contained in V_{i}, w_{i} be the vertex of V_{i} adjacent to r in T, and $U=\left\{u_{1}, u_{2}, u_{3}\right\}$. For each vertex $x \in V_{i}$, the vertex that precedes x on the path from r to x is denoted by x^{-}. Then the following holds:
(i) U is an independent set of G.
(ii) For all two distinct $i, j \in\{1,2,3\}$, if $x \in V_{i} \cap N_{G}\left(u_{j}\right)$, then $x \neq w_{i}$ and $x^{-} \notin N_{G}\left(U-\left\{u_{j}\right\}\right)$.
(iii) For every $1 \leq i \leq 3,\left|V_{i}\right| \geq 1+\sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap V_{i}\right|-\mid N_{G}(U ; 3) \cap$
$V_{i} \mid$.
(iv) $|T| \geq 2+\operatorname{deg}_{G}(U)-\left|N_{G}(U ; 3)\right|$.

Proof. (i) Suppose $u_{i} u_{j} \in E(G)$ for some $1 \leq i<j \leq 3$. Then $T^{\prime}=$ $T+u_{i} u_{j}-r w_{i}$ is a path of G. Since G does not have a hamiltonian path, there exist two adjacent vertices $x \in V\left(T^{\prime}\right)$ and $y \in V(G)-V\left(T^{\prime}\right)$. Then $T^{\prime}+x y$ is a tree with 3 leaves, which contradicts the maximality of T. Hence (i) is proved.
(ii) Suppose that a vertex $x \in V_{i}$ is adjacent to u_{j} for some $j \neq i$. If $x=w_{i}$, then $T+w_{i} u_{j}-r w_{i}$ is a path of G, and as in the proof of (i) we derive a contradiction. Hence we may assume $x \neq w_{i}$. Then $T+x u_{j}-x x^{-}$ is a maximum tree with 3 leaves, whose leaf set is $U-u_{j}+x^{-}$. Thus by (i) x^{-}and $u_{\ell} \in U-\left\{u_{j}\right\}$ are not adjacent in G. Hence (ii) holds.
(iii) Let $\{i, j, \ell\}=\{1,2,3\}$ and $\left(N_{G}\left(\left\{u_{j}, u_{\ell}\right\}\right)\right)^{-}=\left\{x^{-}: x \in N_{G}\left(\left\{u_{j}\right.\right.\right.$, $\left.\left.\left.u_{\ell}\right\}\right)\right\}$. By (i) and (ii), it follows that $\left\{u_{i}\right\}, N_{G}\left(u_{i}\right) \cap V_{i},\left(N_{G}\left(\left\{u_{j}, u_{\ell}\right\}\right)\right)^{-} \cap V_{i}$ and $\left(N_{G}\left(u_{j}\right) \cap N_{G}\left(u_{\ell}\right)-N_{G}(U ; 3)\right) \cap V_{i}$ are pair-wise disjoint. So we have

$$
\begin{aligned}
\left|V_{i}\right| \geq & \left|\left\{u_{i}\right\}\right|+\left|N_{G}\left(u_{i}\right) \cap V_{i}\right|+\left|\left(N_{G}\left(\left\{u_{j}, u_{\ell}\right\}\right)\right)^{-} \cap V_{i}\right| \\
& +\left|\left(N_{G}\left(u_{j}\right) \cap N_{G}\left(u_{\ell}\right)-N_{G}(U ; 3)\right) \cap V_{i}\right| \\
= & 1+\left|N_{G}\left(u_{i}\right) \cap V_{i}\right|+\left|\left(N_{G}\left(\left\{u_{j}, u_{\ell}\right\}\right)\right) \cap V_{i}\right| \\
& +\left|\left(N_{G}\left(u_{j}\right) \cap N_{G}\left(u_{\ell}\right)-N_{G}(U ; 3)\right) \cap V_{i}\right| \\
= & 1+\sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap V_{i}\right|-\left|\left(N_{G}(U ; 3) \cap V_{i}\right)\right| .
\end{aligned}
$$

(iv) Since $2 \geq \sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap\{r\}\right|-\left|N_{G}(U ; 3) \cap\{r\}\right|$, and by (iii) we obtain

$$
\begin{aligned}
\sum_{i=1}^{3}\left|V_{i}\right|+1 \geq & 2+\sum_{i=1}^{3} \sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap V_{i}\right|-\sum_{i=1}^{3}\left|N_{G}(U ; 3) \cap V_{i}\right| \\
& +\sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap\{r\}\right|-\left|N_{G}(U ; 3) \cap\{r\}\right| \\
= & 2+\sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap V(T)\right|-\left|N_{G}(U ; 3) \cap V(T)\right| .
\end{aligned}
$$

Since $N_{G}\left(u_{j}\right) \subset V(T)$ for every $1 \leq j \leq 3$ by the maximality of T, we have

$$
|T|=\sum_{i=1}^{3}\left|V_{i}\right|+1 \geq 2+\sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right)\right|-\left|N_{G}(U ; 3)\right|
$$

By using Lemma 5, we can measure the order of a tree with at most 3 leaves in G.

Lemma 6 Let $m \geq 1$ be an integer and G be a connected graph with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Assume that for every 3-frame $S=\left\{v_{a}, v_{b}, v_{c}\right\}$ such that $a<b<c, \operatorname{deg}_{G}\left(v_{a}\right) \leq a, \operatorname{deg}_{G}\left(v_{b}\right) \leq b-1$ and $\operatorname{deg}_{G}\left(v_{c}\right) \leq c-2$, it holds that $\operatorname{deg}_{G}(S)-\left|N_{G}(S ; 3)\right| \geq m$. Then G has either a hamiltonian path or a tree with 3 leaves and of order at least $m+2$.

Proof. Assume that G does not have a hamiltonian path. Let T be a maximum tree with 3 leaves of G, and denote the leaves of T by v_{a}, v_{b}, v_{c}, where $1 \leq a<b<c \leq n$. Choose such a tree T so that

$$
\begin{equation*}
a+b+c \quad \text { is maximum } \tag{2}
\end{equation*}
$$

among all the maximum trees with 3 leaves of G. Let r be the unique vertex of T with $\operatorname{deg}_{T}(r)=3, U=\left\{v_{a}, v_{b}, v_{c}\right\}$ be the set of leaves of T, and $N_{T}(r)=\left\{w_{a}, w_{b}, w_{c}\right\}$, which lie on the paths from r to v_{a}, v_{b}, v_{c}, respectively. By the maximality of T, we have $N_{G}(U) \subset V(T)$, and so by Lemma 5 (i), U is a 3 -frame of G.

We now show that $\operatorname{deg}_{G}\left(v_{a}\right) \leq a, \operatorname{deg}_{G}\left(v_{b}\right) \leq b-1$ and $\operatorname{deg}_{G}\left(v_{c}\right) \leq$ $c-2$. We first consider v_{c}. For every $v_{t} \in N_{G}\left(v_{c}\right)-N_{T}\left(v_{c}\right)$, it follows that $v_{t} \notin U \cup\left\{w_{a}, w_{b}\right\}$ from Lemma 5 , and choose an edge $v_{t} v_{x}$ of T in the cycle of $T+v_{c} v_{t}$. Then $T+v_{c} v_{t}-v_{t} v_{x}$ is a tree with the leaf set $\left\{v_{a}, v_{b}, v_{x}\right\}$. By (2) we have $x<c$. Since $a, b<c$, there exist at least $\left|N_{G}\left(v_{c}\right)-N_{T}\left(v_{c}\right)\right|+2=\operatorname{deg}_{G}\left(v_{c}\right)+1$ vertices v_{y} whose indexes y are less than c. Hence $\operatorname{deg}_{G}\left(v_{c}\right)+1<c$, which implies $\operatorname{deg}_{G}\left(v_{c}\right) \leq c-2$. By the same argument as above, we can show that $\operatorname{deg}_{G}\left(v_{b}\right) \leq b-1$ and $\operatorname{deg}_{G}\left(v_{a}\right) \leq a$.

By Lemma 5 (iv), we obtain

$$
|T| \geq 2+\operatorname{deg}_{G}(U)-\left|N_{G}(U ; 3)\right| \geq 2+m
$$

Consequently the lemma is proved.
Proof of Theorem 3. If G has a hamiltonian path, then this path is the desired tree. So we may assume that G does not have a hamiltonian path. Choose a maximal tree T with 3 leaves as in Lemma 6 . Then

$$
|T| \geq|G|-k+1+2=|G|-k+3
$$

This implies $k \geq 3$, and also the theorem is proved when $k=2$ or 3 . Assume $k \geq 4$. By connecting all the vertices in $V(G)-V(T)$ to T by edges or paths, we can obtain a spanning tree of G with at most $3+|G|-|T|$ leaves, which is the desired spanning tree of G as $3+|G|-|T| \leq k$.

References

[1] H. Broersma and H. Tuinstra, Independence trees and Hamilton cycles, Journal of Graph Theory 29 (1998), 227-237.
[2] G. Chartrand and L. Lesniak, Graphs \& Digraphs (third edition), Chapman \& Hall, London, 1996.
[3] Y. Egawa, H. Matsuda, T. Yamashita and K. Yoshimoto, On a spanning tree with specified leaves, to appear.
[4] E. Flandrin, H. A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Math. 90 (1991), 41-52.
[5] A. Kyaw, A sufficient condition for spanning trees with bounded maximum degree in a graph, Australasian Journal of Combinatorics 37 (2007), 3-10.
[6] H. Matsuda and H. Matsumura, On a k-tree containing specified leaves in a graph, Graphs Combin. 22 (2006), 371-381.
[7] M. Tsugaki and T. Yamashita, Spanning trees with few leaves, to appear.

[^0]: *This paper was written while the second author is on a Matsumae International Foundation research fellowship at the Department of Computer and Information Sciences, Ibaraki University. Hospitality and financial support are gratefully acknowledged.

